Infraestructura Tecnológica Base del Futuro del Perú

Betty Bezos

PE · PMP · RCDD · DCDC · OSP · ESS

Bezos Technologies

Agenda

La presentación constara de tres secciones principales.

- Introducción de Conceptos
 - Internet de Todo y Conexión Global
- Breve Resumen de Proyectos Recientes
- Discusión Como los proyectos tecnológicos sirven de herramientas de conexión para el Perú del futuro

Preguntas y Discusión

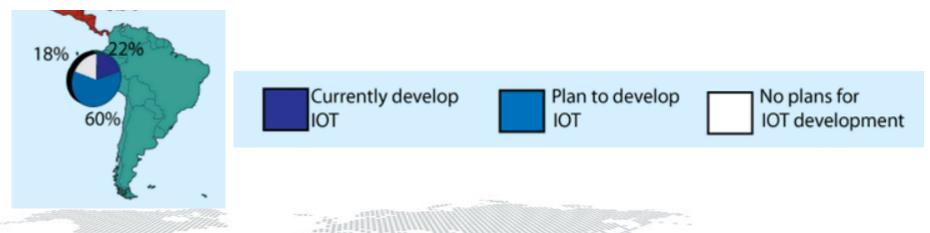
Objetivos

 El objetivo general es ofrecer al participante una introducción a los conceptos de IoT y Conexión Global

 Desarrollar vocabulario e información técnica que motive al participante a continuar la búsqueda y análisis

Introducción

Internet De Todo (IoT) Y Conexión Global



Internet of Things (IoT)

- En su forma básica IoT
 - Es el reto de conectar electrodomésticos como refrigeradores y lavadoras de ropa para actuarlas remotamente
- Mas común uso es en conectar sistemas mecánicos como calderas para monitorear su desempeño y ofrecer mantenimiento en forma proactiva

- Estudios realizados en 2016 muestran
 - Una penetración del Internet del 50% a través de la región
 - Con un crecimiento proyectado en entre 10- 12% en los próximos cinco años

- Estudios realizados en 2016 muestran
 - Crecimiento mayor en proveedores de LPWAN (low- power –wide área - networks)
 - LPWAN
 - También se conoce como LPN (low-power-network)
 - Tecnología inalámbrica con alcance corto y transmisión lenta (kbits)
 - Sistemas ZigBee (IEEE 802.15.4) que conforman PANs (Personal Area Networks)
 - Automatización en residencias, telemetría de pacientes en hospitales

- Estudios realizados en 2016 muestran
 - Implementación de sistemas de "Asset Monitoring" Seguimiento de Activos
 - Aplicaciones en las áreas de transportación y gerencia de transportación de carga y flete

- Estudios realizados en 2016 proponen proyectos agrícolas de base tecnológica
 - Plantaciones de plátano en Colombia (Red Tecnoparque Colombia http://tecnoparque.sena.edu.co/quienes/quees/Paginas/default.aspx)
 - Monitoreo digital de temperatura y humedad ambiental, humedad del terreno, crecimiento de la planta de plátano

- Otros proyectos rastreo de ganado
 - Etiquetas de control aplicadas a las orejas o patas del ganado
 - Batería recargada con el movimiento del animal o panel solar integrado
 - Sistema RFID activo
 - Registro de
 - La temperatura del ganado
 - Localización
 - Condiciones ambientales

Internet of Things (IoT)

- ¿Cómo creen que se desarrollara el IoT en Perú?
 - Sistemas
 - Servicios

Internet of Things (IoT) - Eventos

The trend of IoT-enabled intelligent buildings is here to stay

23 March 2017 19:30 - 23 March 2017 20:00

P Tech Nexus, (Conference Room C/D)20 N. Wacker Drive, Suite 1200, Chicago, IL, 60606

ABOUT EVENT Until now, commercial buildings have traditionally been controlled and monitored by monolithic, domain-specific systems. But now, the IoT has arrived in commercial buildings, and it is

BREVE RESUMEN DE PROYECTOS RECIENTES



- La red dorsal de fibra óptica de 13.500 kilómetros beneficiará sobre todo al sector educación
- Despliega 13 mil kilómetros de fibra óptica para conectar a Lima con 180 provincias, permitirá mejorar en un 80% la conectividad en todo el país

- El Estado hará una inversión total en la red dorsal de 333 millones de dólares
- Puntos de Conexión
 Internacional con Bolivia,
 Brasil, Chile y Ecuador

- La Red Dorsal proveerá
 - Velocidades simétricas
 - Rentable
 - Red robusta
 - Ofrecimiento de direcciones IP estáticas
 - Robusto soporte técnico

Discusión

CÓMO LOS PROYECTOS TECNOLÓGICOS SIRVEN DE HERRAMIENTAS DE CONEXIÓN PARA EL PERÚ DEL FUTURO

El Perú del Futuro

- Utilizara la infraestructura instalada para fomentar servicios que promuevan los beneficios disponibles en una Ciudad Inteligente (Smart City)
- Creación de una infraestructura holística que ofrezca acceso transparente a servicios e información – a través de toda la Nación

El Perú del Futuro

Nación Inteligente

Definición de Ciudad Inteligente

- La Ciudad Inteligente o Ciudad Conectada define comunidades y regiones que utilizan sensores, tecnología M2M (Machine to Machine), conectividad inalámbrica, y análisis de data para aumentar:
 - Eficiencias
 - Reducción de costos
 - Protección
 - Mejores servicios

Definición de Ciudad Inteligente

- Gartner define la CI como
 - Un área urbanizada donde múltiples sectores se integran y desarrollan análisis de meta-data y colaboración de eventos con la finalidad común de una mejor calidad de vida para los habitantes.

Conexiones (Globales)

CONNECTED THINGS INSTALLED BASE WITHIN SMART CITIES (IN MILLIONS)

Smart City Subcategory	2015	2016	2017
Healthcare	9.7	15.0	23.4
Public Services	97.8	126.4	159.5
Smart Commercial Buildings	206.2	354.6	648.1
Smart Homes	294.2	586.1	1,067.0
Transport	237.2	298.9	371.0
Utilities	252.0	304.9	371.1
Others	10.2	18.4	33.9
Total	1,107.3	1,704.2	2,674.0

Beneficios

- Las aplicaciones a instalar en una CI varían pero su necesidad es universal
- Ciudades de tamaño mediano a grandes ciudades, regiones, organizaciones gubernamentales deben adaptar sus procesos ante los beneficios de la interconexión ofrecida por el concepto de CI y sus beneficios

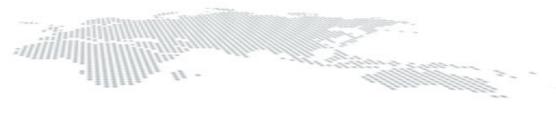
Beneficios

- Integración de sistemas de
 - Transito
 - Seguridad
 - Salud
 - Educación
 - Agua potable
 - Servicios gubernamentales
 - Energía y utilidades

Beneficios - Transito

- Sensores en el pavimento y el uso de aplicaciones en los celulares ayudan al conductor a identificar la mejor ruta a transitar
- Señalación digital advierten con anticipación los choques, roturas o eventos que retrasan la marcha de los vehículos
- Pago de parqueos en calles o lotes utilizando aplicaciones en los celulares

Beneficios - Seguridad

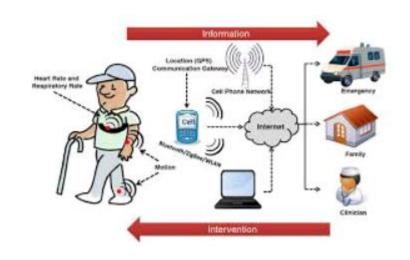

- Información es distribuida a diferentes agencias de seguridad en tiempo-real
- Cámaras instaladas en el agente de seguridad y en su vehículo incrementa la seguridad del agente en el campo
 - Al completar los reportes post-evento el video captado por la cámara puede ayudar a aclarar las condiciones y comportamiento de las personas en el entorno del evento

Beneficios - Seguridad

- Cámaras de seguridad pueden alertar al agente de seguridad de las condiciones en el área antes de llegar al lugar del evento
- Escáneres de huellas dactilares instalados en el vehículo expeditan el proceso de identificación en el campo

Beneficios - Salud

- Control de eventos mayores
 - Ejemplo seria el choque de un camión transportando acido cloridrico
 - Utilizando la red de la ciudad inteligente los vecinos del área reciben notificación inmediata y actualizaciones durante el evento
- Sensores interconectados facilitan la lectura en tiempo real de niveles de contaminación en el aire y agua

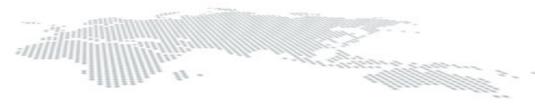

Beneficios - Salud

- Eventos ambientales como plagas de insectos pueden monitorearse remotamente
- Artefactos que utilizan tecnología para monitorear el ritmo cardiaco, actividad, movimiento y emergencias de pacientes en sus hogares
 - Estos artefactos sincronizan con tabletas o teléfonos inteligentes para analizar la información y de forma proactiva actuar en beneficio del paciente

Beneficios - Salud

Beneficios - Educación

- Ejemplo Northern Kentucky University –Center for **Informatics**
 - Mezcla de las artes con tecnología de punta
 - El edificio ofrece a los estudiantes información actual del desempeño de todos los sistemas mecánicos y eléctricos



Beneficios – Agua Potable

- Monitoreo de niveles de agua en embalses y tanques utilizando sistemas inalámbricos
- Monitoreo de niveles de salinidad, pH, y cloro
- Mantenimiento preventivo de válvulas y tuberías previniendo goteos y roturas graves

Beneficios – Servicios Gubernamentales

- Resultados cuantificables
 - Sistema eficiente de transportación
 - Reducción en facturas de agua y servicio eléctrico
 - Incremento en la seguridad del entorno del barrio y la ciudad

Beneficios - Energía

- Conservación energética aumenta con la implementación de redes inteligentes que monitorean la distribución y consumo de energía en diferentes áreas de una ciudad o edificio
- Sensores que identifiquen roturas o cortes en elementos de distribución de energía

Beneficios - Energía

- Análisis de datos de consumo que ayuden a proyectar la demanda y suministro evitando picos en la demanda de servicios
- Coordinación de flotas de vehículos creando eficiencias en la programación de empleados móviles
 - Al enviar el vehículo en la ruta mas directa y uniendo visitas en áreas contiguas se ahorra en gasolina y mantenimiento de los vehículos

Redes de Alta velocidad

- Rey Dorsal Nacional de Fibra Óptica
 - Calidad y Cantidad de datos transmitidos a altas velocidades
 - Fibra óptica
 complementado con
 tecnología 4G LTE

Esquema

http://www.proinversion .gob.pe

Beneficios Tangenciales

Comercio

- Identificar oportunidades de negocio, mercadeo y servicios
- Uso de medios de comunicación social para identificar proveedores y consumidores de servicios

Experiencias

- Turismo, vida nocturna, eventos artísticos
- Uso de "buscadores de ruta" (wayfinders)

Desarrollo

INTEGRACIÓN Y DESARROLLO SOCIAL DE UNA **CIUDAD INTELIGENTE**

La Ciudad Inteligente

Economía – Competitividad	Capital Humano y Social
Gobierno - Participación	Transportación y TI
Recursos Ambientales	Calidad de Vida

Integración

Rol de TI en la Ciudad Inteligente

Retos


- Salvar gran cantidad de datos en una forma segura y eficiente
- Decisión actual
 - Servicios en la Nube
 - Centros de Datos privados
- Procesamiento de datos
 - Profesionales capacitados para ofrecer los servicios de programación

- Las Ciudades Inteligentes deben tener a la población en el centro del diseño
 - La tecnología debe facilitar la vida
 - La tecnología no debe ser intrusiva
 - Resolver problemas no complicarlos

- ¿El teléfono celular cumple con estas premisas?
 - La tecnología debe facilitar la vida
 - La tecnología no debe ser intrusiva
 - Resolver problemas no complicarlos

- Los servicios a la población son la razón principal
- La tecnología no debe solamente aumentar la velocidad de los procesos
 - Debe modificar procesos que no son eficientes o no fluyen debidamente
 - Procesos de aprobación de permisos, licencias, pagos...

Esencial

- Identificar procesos y beneficios
 - Ejemplo una topografía completa de toda la infraestructura de una ciudad
 - Digitar records de viviendas
 - Conexiones de alta velocidad y ancho de banda

- En el centro las personas
- Tecnología trabajando para y por el beneficio del individuo

- Lo que hace una ciudad "inteligente" no es la tecnología
 - Es como se utiliza la tecnología para facilitar la vida y atacar las cuestiones mas criticas

- ¿Cómo mantenemos la privacidad en una ciudad donde la información es clave?
- ¿Quién controla la información?
- "Ubiquitous collection of data"...
- Valor de información colectada anónimamente
 - ¿Opción para conservar la privacidad?

Referencia

Government Information Quarterly 33 (2016) 472-480

Contents lists available at ScienceDirect

Government Information Quarterly

journal homepage: www.elsevier.com/locate/govinf

Privacy concerns in smart cities

Liesbet van Zoonen

Department of Sociology, Faculty of Social Sciences, Erasmus University Rotterdam, Netherlands

L, van Zoonen / Government Information Quarterly 33 (2016) 472-480

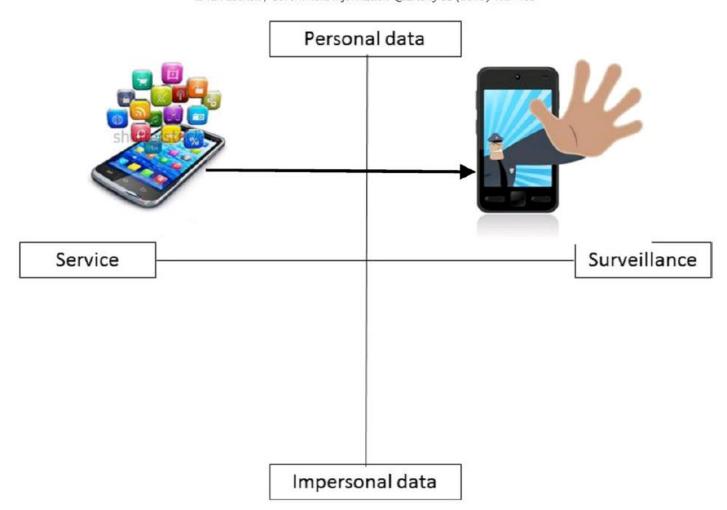
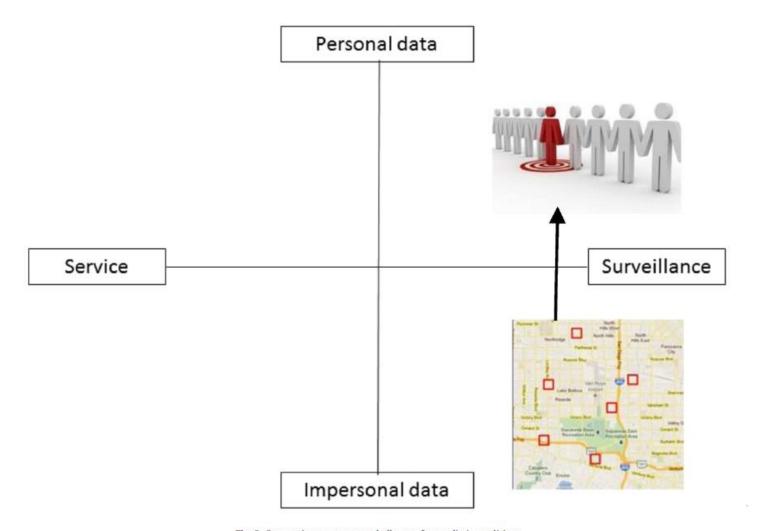



Fig. 4. Contrasting governance challenges for social city media.

BICSI

- ANSI/NECA/BICSI 607, Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings
- ANSI/BICSI 006, Distributed Antenna System (DAS) Design and Implementation Best **Practices**

Institute of Electrical and Electronics Engineers (IEEE)

IEEE 802.3, IEEE Standard for Ethernet

International Electrotechnical Commission (IEC)

- 60364-4-43, Low-voltage electrical installations – Part 4-43: Protection for safety - Protection against overcurrent
- IEC 60364-5-52, Electrical installations of buildings – Part 5-52: Selection and erection of electrical equipment – Wiring systems
- IEC 60849, Sound systems for emergency purposes

International Organization for Standardization (ISO)

- ISO/IEC 11801-1, Generic cabling for premises – Part 1: General customer requirements
- ISO/IEC 14763-2, Information technology Implementation and operation of customer premises cabling - Part 2: Planning and installation
- ISO/IEC 18598, Information technology Automated infrastructure management (AIM) systems - Requirements, data exchange and applications
- ISO/IEC 30129, Information Technology Telecommunications bonding networks for buildings and other structures

National Electrical Contractors Association (NECA)

ANSI/NECA/BICSI 607, Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings

National Fire Protection Association (NFPA)

NFPA 70[®], National Electrical Code[®] (NEC[®])

Telecommunication Industry Association (TIA)

- ANSI/TIA 526-7-A, Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant, Adoption of IEC 61280-4-2 edition 2: Fibre-Optic Communications Subsystem Test Procedures – Part 4-2: Installed Cable Plant – Single-Mode Attenuation and Optical Return Loss Measurement
- ANSI/TIA-526-14-C, Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant; IEC 61280-4-1 Edition 2, Fibre-Optic Communications Subsystem Test Procedure – Part 4-1: Installed Cable Plant – Multimode Attenuation Measurement
- ANSI/TIA-568.0-D, Generic Telecommunications Cabling for Customer Premises
- ANSI/TIA-568.1-D, Commercial Building Telecommunications Cabling Standard
- ANSI/TIA-568-C.2, Balanced Twisted-Pair Telecommunications Cabling and Components Standard

- ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standard
- ANSI/TIA-569-D, Telecommunications Pathways and Spaces
- ANSI/TIA-606-B, Administration Standard for Telecommunications Infrastructure
- ANSI/TIA-607-C, Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises
- ANSI/TIA-758-B, Customer-Owned Outside Plant Telecommunications Infrastructure Standard
- ANSI/TIA-862-B, Structured Cabling Infrastructure Standard For Intelligent Building Systems

ANSI/TIA-1005-A, Telecommunications Infrastructure Standard for Industrial Premises

CONTACTO

Betty Bezos Bezos Technologies

Betty@bezos.com

Skype: bbezos_fl

