Technology & Market Analysis for 100G Datacenter Network Cabling

Apr 13th 2017

Laurence Miao

General Manager, Fiber Optics and Datacommunication, Rosenberger Asia Pacific

Agenda

- Why 100G Datacenter is Needed
- Connectivity Technology and Cost Analysis for 100G
 Datacenter Cabling
- Key 100G Connectivity and Cabling Solution
- Outlook for Future I/O and Connectivity

Global Data Center IP Traffic: Three–fold increase by 2019

Global Data Center IP Traffic: Forecast for the percentage of traditional Datacenter and cloud Datacenter IP traffic growth

Data Center Workloads Per Server: Increasing cloud virtualization

Trend of Mobile Communications: Mobile communication data is growing significantly along with more 3G/4G subscribers.

Datacenter Traffic Composition: Rapid growth of data within datacenter

Traditional Network Architecture can not meet the demand

Conventional Design

- How does a server connect to the left-most access switch communicate with a server connected to the right-most access switch?
- Not the most efficient path to take, and causes more latency while using more bandwidth of networks

Network Architecture Virtualization

- Distributed Core Fabric network architecture supports server virtualization
- Each Leaf switch connects to every Spine switch
 - ➤ A payload only has to hop to a Spine switch and another Leaf switch, which keeps the latency down to a predictable level

Network Architecture Virtualization

- Connectivity Technology and Cost Analysis for 100G
 Datacenter Cabling
- Key 100G Connectivity and Cabling Solution
- Outlook for Future I/O and Connectivity

100GBASE-SR4

Ethernet Standard IEEE 802.3bm

OM4 support of 100GBASE-SR4 is specified at 100m, and 70m over OM3 fiber

- •4*25G optical interface for MMF
- •8 multimode fibers per 100G channel (4 x lane)
- •Easy migration from 40Gb/s to 100Gb/s

100GBASE-SWDM4 working with OM5 Wideband Multimode Fiber

WBMMF fiber has been approved by the TIA-42 Standardization Organization as TIA-492AAAE. The ISO Standardization Organization also approved WBMMF and named OM5 fiber in October 2016.

100GBASE-CWDM4

MSA (Multi-Source Agreements) defined application of 100GBase-CWDM4, which has not been approved by IEEE

- Support 100G for 2KM
- 2 core SM fiber

100GBASE-PSM4

MSA (Multi-Source Agreements) defined application of 100G BASE-PSM4 which has not been approved by IEEE

- •Support 100G for 500m
- •8 SM fiber per 100G channel with MPO interface

Technology Comparison

Ethernet Speed	Standard	Designation	Fiber Type	Number of Fibers	Max. Link Length	Interface	Transceiver
100Gb	IEEE802.3bm	100GBASE -SR4	OM3 OM4	8	70m 100m	MTP MPO	QSFP28
100Gb	SWDM Alliance	100GBASE -SWDM4	OM4 OM5	2	100m 300m	LC Duplex	QSFP28
100Gb	MSA	100GBASE -PSM4	SMF	8	500m	MTP MPO	QSFP28
100Gb	MSA	100GBASE -CWDM4	SMF	2	2km	LC Duplex	QSFP28

Cost Comparison = 100G Transceiver + Cabling

Classic Cabling Channel Model

Modular Fiber Panel =

Modular Fiber Panel

40G/100G/400G module

10G/40G/100G module

- Connectivity Technology and Cost Analysis for 100G
 Datacenter Cabling
- Key 100G Connectivity and Cabling Solution
- Outlook for Future I/O and Connectivity

Key 100G Connectivity and Cabling Solution

100GBASE-SR4

25G SFP+*48Pcs

100G QSFP28*24Pcs

- 100GBASE-SR4 can be converted to 4*25G physically by using MPO-LC harness
- Can be unified to use switch equipment with 100G ports, to reduce the cost of switches and operational complexity
- The cost of the one 100G QSFP28 transceivers is approximately equal to the 70% cost of the 4 pcs of 25G transceivers

Key 100G Connectivity and Cabling Solution

100GBASE-SWDM4

- 100GBASE-SWDM4 compared to the conventional MPO 8-core interface to save up to 75% of the amount of optical fiber
- Support at least 300 meters distance and meet majority of data center application requirements,
 and does not need to configure a variety types of transceiver to deal with distance issue
- SWDM solution has big potential to reduce its cost substantially when there is large-scale deployment

- Connectivity Technology and Cost Analysis for 100G
 Datacenter Cabling
- Key 100G Connectivity and Cabling Solution
- Outlook for Future I/O and Connectivity

Trend of High Speed Interface Technology

	10G	20G	25 G	40G	50 G	100G
10GbE	1x					
40 GbE	4x	2x		1x		
100 GbE	10x		4x		2x	1x
400 GbE			16x	10x	8x	4 x
1TbE						10x

A single fiber lane can carry an increasing amount of data

Data Center Technology Trends

Yesterday

Physical Aggregation

- Shared Power
- Shared Cooling
- Rack Management
- Cu Interconnects

Today

Modular Compute Interconnect Integration

Future

Subsystem Aggregation

- Pooled compute
- Pooled storage
- Pooled memory
- Shared boot
- Photonics Interconnects

Source: Intel

Evolving Silicon Photonics and I/O

What is Integrated Photonics?

Next Generation of Interface Technology

PRIZM® LightTurn® is a miniature multi-fiber connector interface for next generation small form factor multimode parallel optical I/O modules

MXC[™] the Future I/O Interface >100G

Using the most advanced high-density interconnect technology, MXC™ the Big Data Connector can provide a direct card edge interface to embedded optical engines such as Intel® Silicon Photonics chips

- High Performance Computing
- Switching/Routing Fabrics
- Switch to Server Interconnects

MXC[™] the Future I/O Interface >100G

- The expanded beam lens technology
- Greater alignment tolerances at the mating plane of the connectors which guarantees consistently low I/L and high R/L
- Larger beam cross section results in decreased impact of debris
- Less spring force required for mating

MXC[™] the Future I/O Interface >100G

- The number of fiber cores in a single MXC interface reaches 16 x 4 = 64 core which can support 800G per port (i.e. current 8 MMF*100G)
- Core switch 1HU line card with MXC[™] interface can support transmission capacity @800G*48Port= 38.4 Tbit/s

Summary and Recommendation

100GBASE-SR4 has good cost performance and support 100G converting to 4 *25G physically, can improve data center operation and maintenance flexibility.

100GBASE-SWDM4 can support longer distance by reducing 75% fiber cores to realize high density deployment. With continued cost reduction, it has a good potential application in near future.

Next-generation IT equipment in datacenter with silicon photonics technology c/w PRIZM LightTurn and MXC interface etc. makes the I/O with higher density, lower cost and lower power consumption, which can support 400G, 800G, 1.6T or even higher-rate application. In next 5-10 years silicon photonics technology will play an important role in datacenter transformation.

Thank you for your attention

