"What do DCDCs do? and how they relate to the ANSI/BICSI 002 standard?"

Rui Takei, RCDD, DCDC

Based on presentation from : Jonathan Jew President, J&M Consultants, Inc Rick Ciordia, PE, RCDD, DCDC, RTPM, CT BICSI Global Region Director Gautier Humbert, RCDD, CDCDP.BICSI Mainland Europe District Chair

Rui Takei, RCDD, DCDC

- BICSI Datacenter Operation Standards Subcommittee Vice Chair
 BICSI Registrations & Credentials Supervision Committee (RCSC) Member
 BICSI Global Development Committee Member
 BICSI Global Development Translations Subcommittee Chair
 BICSI Japan District Board Member
- A Volunteer from a Corporate Member since March 2013, and participated in many committee activities as listed above.
- His role in BICSI Japan centered around operation of credentialing programs and publication of standards documents.
- Presented at numerous BICSI conferences outside Japan.
- 20+ years experience in telecommunications and data center industries.
- Has been with AT TOKYO data center since its foundation in June 2000, first as telecoms facility O&M engineer, and later as Chief Telecommunications Engineer and head of cabling services group, overseeing its in-house cabling.

_ 141 _

BICSI International Standards Program

- Develop standards within all facets of Information & Communications Technology (ICT) infrastructure design and installation
- Details:
 - Over 450 member worldwide
 - Accredited by ANSI
 - Develops international open to use/"royalty free"
 standards and best practices

BICSI Standards Within ICT

_	_	_
-	-	-
_	ᆫ	_

Defines the message and transmission characteristics

ISO/IEC, CENELEC, ANSI/TIA

Defines the transmission media and system specifications

BICSI

Defines how to design solutions using transmission media and systems

BICSI standards and manuals are also a family of complementary publications and are meant to work with TIA, CENELEC, ISO, & other national standards

BICSI Publications Complement National Standards

BICSI-002 is part of a family of standards & manuals

Reach of BICSI Standards

About ANSI (American National Standards Institute)

- Promotes standards use within United States
- Accreditation body
 - Standards Development
 - Credentialing Bodies (ISO 17024)
 - Testing Laboratories (ISO 17025)
- Ensures open and unbiased standards development processes

Does not create standards

BICSI 002-2014 Contents Breakdown

_ 145 _

Content Revision and Expansions

- **Availability Classes**
- Modular Data Centers*
- Hot/Cold Aisles
- Mechanical Systems*
- DCIM*
- Circuit Maps and DC Power
- Cabinet Airflow and Cabling Capacity Telecommunications Cabling
- "Green" / Efficiency*

- Building Structure
- Site Hazards
- Data Center Services Outsourcing Model*
- Bonding & Grounding
- Commissioning
- Network Security*
- (And More ...)

* Indicates all new content to this edition

TIA-942 and BICSI-002

- TIA-942 provides requirements for the design of data center telecommunications infrastructure
- BICSI-002 provides a wide range of information, recommendations, and requirements regarding all aspects of designing a data center

TIA-942 and BICSI-002

- BICSI-002 provides best practices that exceed the minimum requirements of TIA-942
- BICSI-002 provides information on a wide range of subjects not covered in TIA-942

BICSI-002 Best Practices vs TIA-942 requirements

- Example: Ceiling heights
 - TIA-942
 - minimum height 2.6 m (8.5 ft)
 - BICSI-002
 - minimum height 3 m (10 ft)
 - Recommended height 4.5 m (15 ft) or greater

TIA standards apply in US and Canada and are widely used in other countries

TIA-942 is part of a family of TR-42 cabling standards

_ 148 _

BICSI-002 by design is intended to complement TIA-942 and other national data center standards, and is incomplete without them

Using BICSI-002 & TIA-942

- Design of the telecommunications cabling infrastructure (cabling system, pathways, spaces) should use both TIA-942-B and BICSI-002-2014
- Use BICSI-002 to understand other aspects of the data center design and make informed decisions when specifying requirements and reviewing designs by other disciplines

BICSI-002 Complements TIA-942

Other families of standards apply in other countries

European (CENELEC) premises cabling standards

International (ISO/IEC) premises cabling standards

_ 151 _

BICSI Design Classes and Selection Methodology

BICSI Design Class Determination

- Based on three questions
 - 1. How much downtime per year will be allowed for maintenance?
 - 2. During scheduled operation, what is the maximum allowed downtime?
 - 3. What is downtime's impact to operations?
- Answers will indicate design class for starting point of requirements

Interaction of Answers

Finding the Right Design

- Define operational availability requirements
- Determine the impact of downtime
- Identify the required Availability Class from below

Impact of Downtime (from Table B3)	Operational Availability Level (from Table B2)					
	0	1	2	3	4	
Isolated	Class 0	Class 0	Class 1	Class 2	Class 2	
Minor	Class 0	Class 1	Class 2	Class 3	Class 3	
Major	Class 1	Class 2	Class 2	Class 3	Class 3	
Severe	Class 1	Class 2	Class 3	Class 3	Class 4	
Catastrophic	Class 1	Class 2	Class 3	Class 4	Class 4	

BICSI DC Design Classes

- Class 0: Single path, and fails to meet one or more criteria of Class 1
- Class 1: Single path
- Class 2: Single path with redundant components
- Class 3: Concurrently maintainable & operable
- Class 4: Fault tolerant

Availability Class Prefixes

- Class Fx: Facility (Electrical & Mechanical)
- Class Cx: Cable Plant
- Class Nx: Network Infrastructure
- Class Sx: Data Processing and Storage Systems
- Class Ax: Applications

Class F1 Electrical Example

Class F2 Electrical Example

_ 155 _

Electrical Class F3

Electrical Class F4

_ 156 _

Telecommunication Classes

Mechanical Class F2

- Redundant critical components
- All power feeds from common upstream distribution
- Only redundant components able to be maintained

under load

Mechanical Class F4

- Redundant equipment and piping for maintenance
- Power feed so that cooling capacity does not drop below "N" for any maintenance or fault upstream.
- Maintenance do not decrease cooling capacity below "N+1"

Class NO/N1 and N4 Network

Bicsi

_ 158 _

Class S4 System and A4 Application

Are BICSI & Uptime Similar?

• ANSI/BICSI 002-2014

This standard provides a reference of common terminology and design practice ... a framework for the process to determine facility criticality and to develop optimum design & implementation solutions

Uptime Tiers

"Only data center benchmarking system developed by and for data center owners Performance-based on fundamental concepts

Not a checklist, design menu, or cookbook"

Source: *Uptime Institute: Tier Classification System & Operational Sustainability* presented by Dana Smith, Director of Development, Uptime Institute at BICSI Andino 2012

_ 159 _

Availability and Multi-Site Data Centers

- Prior to virtualization, subclasses were aligned through all data centers
- Today, a single data center may not have alignment
- Availability class methodology can be used in discussions about using multiple data centers to achieve availability target

Example: Class 3 Availability Using Three Class 2 Data Centers

DC Operations Standard

- New BICSI 009 Data Center Operations standard being developed
- Includes participants from a wide variety of organizations & countries
- Use as a reference for operation & maintenance of the data center after it is built

DC Operations Standard Sections

- Governance
- Standard Operating Procedures
- Maintenance Procedures
- Emergency Operating Procedures
- Management

_ 161 _

Thank You!

Rui Takei , RCDD, DCDC rtakei@bicsi.jp takei@attokyo.co.jp

